PUBLICATIONS

Paper
  • (Highlight) Liquid Metal for High-Entropy Alloy Nanoparticles Synthesis
    Guanghui Cao#, Jingjing Liang#, Zenglong Guo#, Kenan Yang#, Gang Wang, Huiliu Wang, Xuhao Wan, Zeyuan Li, Yijia Bai, Yile Zhang, Junlin Liu, Yanpeng Feng, Zhenying Zheng, Cai Lu, Guangzhi He, Zeyou Xiong, Ze Liu, Shengli Chen, Yuzheng Guo*, Mengqi Zeng*, Junhao Lin*, Lei Fu* First Pubulished: 14 June 2023

    High-entropy alloy nanoparticles (HEA-NPs) show great potential as functional materials. However, thus far, the realized high-entropy alloys have been restricted to palettes of similar elements, which greatly hinders the material design, property optimization and mechanistic exploration for different applications. Herein, we discovered that liquid metal endowing negative mixing enthalpy with other elements could provide a stable thermodynamic condition and act as a desirable dynamic mixing reservoir, thus realizing the synthesis of HEA-NPs with a diverse range of metal elements in mild reaction conditions. The involved elements have a wide range of atomic radii and melting points. We also realized the precisely fabricated structures of nanoparticles via mixing enthalpy tuning.

  • (Highlight) Bandgap Tuning of Two-Dimensional Materials by Sphere Diameter Engineering
    Mengqi Zeng#, Jinxin Liu#, Lu Zhou, Rafael G. Mendes, Yongqi Dong, Min-Ye Zhang, Zhi-Hao Cui, Zhonghou Cai, Zhan Zhang, Daming Zhu, Tieying Yang, Xiaolong Li, Jianqiang Wang, Liang Zhao, Guoxian Chen, Hong Jiang, Mark H. Rümmeli, Hua Zhou*, Lei Fu* First Pubulished: 25 February 2020

    Developing a precise and reproducible bandgap-tuning method that enables tailored design of materials is of crucial importance for optoelectronic devices. Toward this end, we report a sphere diameter engineering (SDE) technique to manipulate the bandgap of two-dimensional materials. This SDE technique showing good precision, uniformity, and reproducibility with high efficiency may further accelerate the potential applications of 2D materials.

  • Synthesis of Ultrathin High-Entropy Oxides with Phase Controllability
    Jingjing Liang#, Junlin Liu#, Huiliu Wang, Zeyuan Li, Guanghui Cao, Ziyue Zeng, Sheng Liu, Yuzheng Guo, Mengqi Zeng*, Lei Fu*
    First Pubulished: 5 March 2024

    The self-lattice-framework with mixing assistor guided strategy was proposed for synthesizing ultrathin high-entropy oxides with the desired phase structures. Natural bonding preference constructed the basis of the lattice framework, and the Ga assistor promoted multiple elements into the lattice site to form the high-entropy state. The glucose and glycine were utilized to generate the carbon template for guiding the morphology. This work lays the foundation for applications of high-entropy oxides and inspires a similar methodology to explore high-entropy compounds.

  • Highlights of Research Activities in Advanced Materials at Wuhan University
    Lei Fu*, Zhengyou Liu* First Pubulished: 24 February 2024

    This special issue of Advanced Materials features 31 high-quality papers to commemorate Wuhan University’s 130th anniversary. These reviews and research articles contributed by the faculty of Wuhan University cover a broad scope of materials science. This issue not only signifies the rapid growth of research in materials at Wuhan University but also exemplifies the institution’s ongoing interdisciplinary pursuits.

  • Interlayer Bi-Atomic Pair Bridging the van der Waals Gap for 100% Activation of Two-Dimensional Layered Material
    Chenyang Wang#, Wenxuan Yang#, Yiran Ding#, Pengfei Bai#, Ziyue Zeng, Haifeng Lv, Xiang Li, Huiliu Wang, Zhouyang Wang, Mengqi Zeng*, Xiaojun Wu*, Lei Fu* First Pubulished: 25 January 2024

    We report a strategy to achieve 100% activation of atoms on the basal plane of 2D layered materials by constructing an interlayer bi-atomic bridge. New gap states at the Fermi level are introduced and interlayer conductivity is enhanced in this catalyst. Exposed basal plane atoms are optimized to a state favorable for adsorbing catalytic intermediates.

  • Ultra-Wettable Liquid Metal Interface for Highly Durable Solid-State Lithium Batteries
    Chenyang Wang#, Ziyue Zeng#, Peimeng Qiu, Peng Li, Shurun Chen, Shengli Chen, Mengqi Zeng*, Lei Fu* First Pubulished: 2 February 2024

    We presented a new concept to alter the lithiophobic nature of solid electrolytes through the creation of an ultra-wettable interface utilizing liquid metal. It can accomplish sufficient and intimate interface contact between solid electrolyte and Li metal without void formation at the atomic scale, thus promoting the diffusion of Li+ at the interface. The solid-state batteries exhibit superior cycling stability and rate performance without dendrite growth.

  • Ultrathin van der Waals Lanthanum Oxychloride Dielectric for Two-Dimensional Field-Effect Transistors
    Linyang Li#, Weiqi Dang#, Xiaofei Zhu#, Haihui Lan, Yiran Ding, Zhu-An Li, Luyang Wang, Yuekun Yang, Lei Fu*, Feng Miao*, Mengqi Zeng* First Pubulished: 8 December 2023

    The vdW LaOCl single-crystal dielectric was synthesized by precisely controlling the growth kinetics. Due to the considerable dielectric properties of LaOCl and its dangling-bond-free and atomically smooth surface, the MoS2 FET with vdW LaOCl dielectric exhibits ultralow hysteresis. These results greatly verified vdW LaOCl single crystal possesses the tremendous potential to act as an ideal gate dielectric for 2D FETs.

  • 2D Quasi-Layered Material with Domino Structure
    Haihui Lan#, Luyang Wang#, Runze He#, Shuyi Huang#, Jinqiu Yu, Jinming Guo, Jingrui Luo, Yiling Li, Jinyang Zhang, Jiaxin Lin, Shunping Zhang, Mengqi Zeng*, Lei Fu* First Pubulished: 9 November 2023

    We report a material system that differentiates from layered and non-layered materials, termed quasi-layered domino-structured (QLDS) materials, effectively bridging the gap between these two typical categories. Considering the skewed structure, the force orthogonal to the 2D QLDS-GaTe growth plane constitutes a synergistic blend of vdW forces and covalent bonds, with neither of them being perpendicular to the 2D growth plane. This unique amalgamation results in a force that surpasses that in layered materials, yet is weaker than that in non-layered materials.

  • Atomic Manufacturing of Advanced Nanomaterials
    Yiran Ding#, Chenyang Wang#, Mengqi Zeng, Lei Fu* First Pubulished: 15 September 2023

    Atomic manufacturing is a guideline for researchers to precisely synthesize materials, customize their properties and apply them into advanced applications in demand. Atomic manufacturing has the ability to visualize substances at the atomic level, while manipulating them atom by atom, inducing and promoting chemical reactions, and ultimately obtaining products with specific atomic structures.

  • Rational Designs of Biomaterials for Combating Oral Biofilm Infections
    Zhengrong Yin#, Yaxi Liu#, Annikaer Anniwaer, Yuan You, Jingmei Guo, Ying Tang, Lei Fu, Luyao Yi*, Cui Huang* First Pubulished: 11 August 2023

    Intractable oral biofilms are the chief culprits of both dental infections and systemic inflammation, posing a great threat to human health. In this review, core strategies of recently developed biomaterials in eradicating oral biofilm are present. Furthermore, design rationales of biomaterials with advanced antibiofilm capacity, as well as versatile antibiofilm biomaterials with other functions are comprehensively summarized.

  • Monolayer High-Entropy Layered Hydroxide Frame for Efficient Oxygen Evolution Reaction
    Yiran Ding#, Zhouyang Wang#, Zijia Liang#, Xueping Sun, Zihang Sun, Yuanxin Zhao, Junlin Liu, Chenyang Wang, Ziyue Zeng, Lei Fu, Mengqi Zeng*, Lin Tang* First Pubulished: 3 June 2023

    We present a universal synthesis of monolayer HELH frame in a mild environment, regardless of the solubility product limit. Mild reaction conditions allow us to precisely control the fine structure and elemental composition of the final product. The high-entropy engineering and fine nanostructure control open opportunities to solve the problems of low intrinsic activity, very few active sites, instability, low conductance during OER for LDH catalysts.

  • Curvature Geometry in 2D Materials
    Nan Wei, Yiran Ding, Jiaqian Zhang, Linyi Li, Mengqi Zeng*, Lei Fu* First Pubulished: 18 May 2023

    Curvature engineering offers a new tuning freedom beyond the thoroughly studied layer number, grain boundaries, stack, etc. The precise control of the curvature geometry in 2D materials can redefine this material family. Special attention will be given to this emerging field and highlight the possible future directions. With the step-by-step achievement in understanding the curvature engineering effect in 2D materials and establishing reliable delicate curvature controlling strategies, a brand-new era of 2D materials research should be developed.

  • Room-Temperature Magnetism in Two-Dimensional MnGa4-H Induced by Hydrogen Insertion
    Nan Wei#, Liangcheng He#, Changwei Wu#, Dabiao Lu, Ruohan Li, Haiwen Shi, Haihui Lan, Yao Wen, Jun He, Youwen Long*, Xiao Wang*, Mengqi Zeng*, Lei Fu* First Pubulished: 3 March 2023

    We develop a plasma-enhanced chemical vapor deposition method to construct the 2D room-temperature magnetic MnGa4-H crystal with a thickness down to 2.2 nm. Hydrogen insertion inside the MnGa4 lattice can modulate the atomic distance and charge state, thereby ferrimagnetism can be achieved without destroying the structural configuration. 2D MnGa4-H crystal is high-quality and air-stable, demonstrating robust and stable room-temperature magnetism with a high Curie temperature above 620 K.

  • Chemical Potential Modulated Ultrahigh-Phase-Purity Growth of Ultrathin Transition Metal Boride Single Crystals
    Jingjing Si#, Jinqiu Yu#, Haihui Lan#, Lixin Niu#, Jingrui Luo, Yantao Yu, Linyang Li, Yu Ding, Mengqi Zeng*, Lei Fu*
    First Pubulished: 13 January 2023

    For the first time, we demonstrate a chemical potential-modulated strategy to realize the precise synthesis of various ultrahigh-phase-purity (approximately 100%) ultrathin TMB single crystals, and the precision in the phase formation energy can reach as low as 0.01 eV per atom. The ultrathin MoB2 single crystals exhibit an ultrahigh Young’s modulus of 517 GPa compared to other 2D materials.

  • Structure Modulation of Two-Dimensional Transition Metal Chalcogenides: Recent Advances in Methodology, Mechanism and Applications
    Yao Xiao, Chengyi Xiong, Miao-Miao Chen*, Shengfu Wang, Lei Fu*, Xiuhua Zhang* First Pubulished: 25 November 2022

    In this review, we present a systematic and comprehensive overview of the structure modulation of TMDs, including point, linear and out-of plane structures, following and updating the conventional classification for silicon and related bulk semiconductors. Finally, we demonstrate challenges and prospects in the structure modulation of TMDs and forecast potential directions about what and how breakthroughs can be achieved.

  • Facet Engineering of Ultrathin Two-Dimensional Materials
    Linyang Li#, Yabei Xia#, Mengqi Zeng*, Lei Fu* First Pubulished: 4 August 2022

    This review provides a comprehensive overview of the recent advances in the facet engineering of 2D materials, ranging from a basic understanding of facets and the corresponding approaches and the significance of facet engineering. We also propose current challenges and forecast future development directions including the establishment of a facet database, the fabrication of new 2D materials, the design of specific substrates, and the introduction of theoretical calculations and in situ characterization techniques.

  • Chemical Insights into Two-Dimensional Quantum Materials
    Jinglu Liu#, Yiran Ding#, Mengqi Zeng*, Lei Fu* First Pubulished: 18 May 2022

    It is crucial to understand and conclude the process of 2D material design and synthesis from chemical insights to further research the intrinsic quantum physics and better explore potential properties and applications of 2D quantum materials. In this review, we first summarize the recent advance of 2D quantum phenomena, then give the universal design paradigm from two aspects: element-dependence and phase-dependence, at last we propose different synthesis resolutions. We also summarize the challenges in this area and put forward feasible solution.

  • Emerging Liquid Metal Biomaterials: From Design to Application
    Luyang Wang, Runze Lai, Lichen Zhang, Mengqi Zeng*, Lei Fu* First Pubulished: 9 May 2022

    Liquid metals (LMs) with good biosafety, deformability, functionalizability and stimulus responsiveness have great potential in biomedicine. In this review, the advantages of LMs are presented. Recent advances in the design and application of LM-based biomaterials are comprehensively summarized to provide deep insights into structure-property relationships and guide their on-demand design and performance optimization for therapeutics, bioimaging, biosensors, and tissue repair.

  • Dual Self-Built Gating Boost Hydrogen Evolution Reaction
    Xiaohui Zhu#, Chenyang Wang#, Tingli Wang#, Haihui Lan, Yu Ding, Hu Shi, Lisi Liu, Haiwen Shi, Luyang Wang, Huiliu Wang, Yiran Ding, Yingshuang Fu, Mengqi Zeng*, Lei Fu* First Pubulished: 27 Apirl 2022

    We report a design strategy, namely “dual self-built gating” to boost hydrogen evolution reaction. Taking ReS2 and WS2 as an example, the dual self-built gating induces electrons from WS2 to ReS2 directionally. The tailored electronic structure can balance the adsorption of intermediates and desorption of hydrogen synergistically, thus greatly promoting the intrinsic activity of active sites.

  • The Universal Growth of Ultrathin Perovskite Single Crystals
    Linyi Li#, Yantao Yu#, Peng Li, Jinxin Liu, Lihan Liang, Luyang Wang, Yu Ding, Xiaocang Han, Jiamin Ji, Shengli Chen, Dehui Li, Pan Liu, Shunping Zhang, Mengqi Zeng*, Lei Fu* First Pubulished: 20 March 2022

    The universal growth of ultrathin perovskite single crystals is realized by designing an oriented solvent microenvironment induced by the interfacial electric field originated from the charge separation between solid and liquid phases. Such a strategy can fabricate a wide range of high-quality ultrathin perovskites single crystals, from layered to non-layered, organic to inorganic, and toxic to low-toxic lead-free perovskite. Notably, the realization of high quality and diversity of ultrathin perovskites will facilitate both fundamental studies and optoelectronic applications.

  • Selective Antisite Defect Formation in WS2 Monolayers via Reactive Growth on Dilute W-Au Alloy Substrates
    Kai Wang, Lizhi Zhang, Giang D. Nguyen, Xiahan Sang, Chenze Liu, Yiling Yu, Wonhee Ko, Raymond R. Unocic, Alexander A. Puretzky, Christopher M. Rouleau, David B. Geohegan, Lei Fu, Gerd Duscher, An-Ping Li, Mina Yoon, Kai Xiao* First Pubulished: 19 November 2021

    We present an Au-assisted chemical vapor deposition approach to selectively form SW and S2W antisite defects, whereby one or two sulfur atoms substitute for a tungsten atom in WS2 monolayers. Guided by first-principles calculations, they describe a new method that can maintain tungsten-poor growth conditions relative to sulfur via the low solubility of W atoms in a gold/W alloy, thereby significantly reducing the formation energy of the antisite defects during the growth of WS2.

  • Ultrafast Single-Crystal-to-Single-Crystal Transformation from MOF to 2D Hydroxide
    Wenjie Wang#, Yao Wang#, Runze He, Xiaozheng Wang, Zheng Shen, Xiaocang Han, Alicja Bachmatiuk, Wen Wen, Mark H. Rümmeli, Pan Liu, Mengqi Zeng*, Lei Fu* First Pubulished: 26 November 2021

    We demonstrated that single crystallinity can be totally maintained even through dramatic structural changes, which only requires several seconds. Ultrathin 2D single crystals can be obtained by our strategy, which is difficult for traditional methods. This discovery illustrates the possibility of transforming from 3D frameworks to 2D inorganic single crystals, vastly expanding the research scope of the SCSC transformation.

  • General Synthesis of 2D Rare-Earth Oxides Single Crystals with Tailorable Facet
    Linyang Li#, Fangyun Lu#, Wenqi Xiong, Yu Ding, Yangyi Lu, Yao Xiao, Xin Tong, Yao Wang, Shuangfeng Jia, Jianbo Wang, Rafael G. Mendes, Mark H. Rümmeli, Shengjun Yuan, Mengqi Zeng*, Lei Fu* First Pubulished: 26 August 2021

    We achieved the synthesis of a wide variety of high-quality 2D rare-earth oxides (REO) single crystals with tailorable facets via designing a hard-soft-acid-base couple. Also, the facet-related magnetic properties of 2D REO single crystals were revealed. Our approach provides a foundation for further exploring other facet-dependent properties and various applications of 2D REO and an inspiration for the precise growth of other non-layered 2D materials as well.

  • A Liquid Metal Reaction System for Advanced Material Manufacturing
    Mengqi Zeng#, Linyang Li#, Xiaohui Zhu, Lei Fu* First Pubulished: 26 July 2021

    This Account aims to focus on the controllable fabrication of 2D materials and functional composite materials by liquid metals. Based on the characteristics of the surface layering and solidification, and excellent fluidity, the self-limited growth and ordered arrangement of 2D materials on liquid metal surfaces can be achieved, which enriches the material structures and leads to new properties.

  • Bidirectional and Reversible Tuning of the Interlayer Spacing of Two-Dimensional Materials
    Yiran Ding#, Mengqi Zeng#, Qijing Zheng, Jiaqian Zhang, Ding Xu, Weiyin Chen, Chenyang Wang, Shulin Chen, Yingying Xie, Yu Ding, Shuting Zheng, Jin Zhao, Peng Gao, Lei Fu*
    First Pubulished: 7 October 2021

    We report the preparation of 2D materials with tunable interlayer spacing by introducing active sites (Ce ions) in 2D materials to capture and immobilize Pt single atoms. The strong chemical interaction between active sites and Pt atoms contributes to the intercalation behavior of Pt atoms in the interlayer of 2D materials and further promotes the formation of chemical bonding between Pt atom and host materials. Taking cerium-embedded molybdenum disulfide as an example, intercalation of Pt atoms enables interlayer distance tuning via an electrochemical protocol, leading to interlayer spacing reversible and linear compression and expansion.

Total66   1/3 
FirstPrevious  Page
Total66 FirstPrevious123NextLast 1/3
25 1 25